M1. (a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself);

Not withdraw an electron
If ref to ionic, metallic , imf etc then $C E=0$

From a covalent bond or from a shared pair of electrons;
Not distort
Not remove electrons
(b) Van der Waals/ vdw/London/ temporary (induced) dipole/ dispersion forces;

Hydrogen bonds/H bonds;
Not just hydrogen
1
(c) (Large) electronegativity difference between $\mathrm{N}+\mathrm{H} /$ difference of 0.9 / N very electronegative;

Insufficient to say $N=3.1$ and $H=2.1$

Forms $\mathrm{N} \delta-$ / $\mathrm{H} \delta+$ or dipole explained in words;
Not N becomes (fully) negative or vice versa

Lone pair on N attracts/forms weak bonds with $\mathrm{H}\left(\delta^{+}\right)$;
QWC
Can score M2 and 3 from a diagram
(d) Co-ordinate/dative;

If not correct then $C E=0$. If covalent/blank mark on.

Both electrons/ lone pair (on $\mathrm{P} / \mathrm{PH}_{3}$)
Not lone pair on hydrogen

Shares/donated from $\mathrm{P}\left(\mathrm{H}_{3}\right) /$ to $\mathrm{H}(\delta+)$;
(e) 3 bonds and 1 lp attached to As;

Must label H and As atoms
Accept distorted tetrahedral not bent tetrahedral

Pyramidal/tetrahedral/ trigonal pyramidal;
Not bipyramidal/triangular
(f) (Only) weak Van der Waals forces between molecules $/ \mathrm{AsH}_{3}$ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds;

Accept has no H bonds.
Ignore dp-dp in AsH_{3} provided ammonia has stronger IMF.
If between atoms mentioned $C E=0$
Break bonds CE $=0$
(g) $4 \mathrm{AsCl}_{3}+3 \mathrm{NaBH}_{4} \rightarrow 4 \mathrm{AsH}_{3}+3 \mathrm{NaCl}+3 \mathrm{BCl}_{3} ;$

Accept multiples

M2. (i)

(1)

(1)
[Do not allow shapes which show a lone pair]
$\mathrm{BF}_{3} \quad$ Trigonal planar/planar triangular
[Not plane triangle]

$\mathrm{BF}^{-\overline{4}}$	Tetrahedral
	$[$ Not distorted tetrahedral]

Equal repulsion between (4) bonding pairs/bonds/bonding electrons
(ii) Lone pair donated / both electrons supplied by one atom from F^{-}(to B) [ignore missing charge or fluorine or 'atom']
dative/dative covalent/coordinate bonding

M3. (a) (i) Electronegativity (difference) or suitable description (1)
Accept F and Cl are highly electronegative
Not both atoms are highly electronegative
(ii) $\mathrm{HF}=$ hydrogen bonding (1)
$\mathrm{HCl}=$ (permanent) dipole-dipole bonding or even van de Waals' (1) Hydrogen bonding stronger / is the strongest IMF (1)

Accept a statement that HF must have the stronger IMF, even if no IMFs identified
The explanation must be based on intermolecular forces/attractions
Note: if the explanation is clearly intramolecular $=C E$
(b) Electron pair or lone pair donated (1)

Do not accept 'donation of electrons'
From chloride ion to Al or AlCl_{3} (1)
M1 can be earned by a general explanation of coordinate bonding, even if the electron pair is said to come from Al.

The second mark, M2, is for this specific bond

 Ignore missing charge(c)

(1)
PCl_{4}^{+}

(1) [Look for: ${ }^{\mathrm{PCl}_{5} \text { shown as trigonal bipyramid }}$ Bond Angle(s) 90° and 120° (1) Bond angle(s) 109 or 109.5° (1)

M4. (a) dative / coordinate (covalent) bond;

Lone/non-bonding pair / both electrons;
(donated) from P to H^{+};
(b)
PH_{3}
PH_{4}^{+}

(1)

(1)
pyramidal OR trigonal pyramid $109\left({ }_{(1 / 2}\right)^{\circ}$; (accept tetrahedral)

M5. (a) $4 \mathrm{LiH}+\mathrm{AlCl}_{3} \rightarrow \mathrm{LiAlH}_{4}+3 \mathrm{LiCl}$
(b) $\mathrm{H}^{-}=1 \mathrm{~s}^{2}$ or $1 \mathrm{~s}_{2}$
(c) Tetrahedral or diagram
(Not distorted tetrahedral)

(Equal) repulsion

between four bonding pairs / bonds
(Not repulsion between H atoms loses M2 and M3)
(Not 'separate as far as possible')
('4' may be inferred from a correct diagram)
(d) Dative (covalent) or coordinate

Lone pair or non-bonding pair of electron or both e^{-}
Page 6

QoL Donated from H^{-}to Al or shared between H and Al (tied to M2) (Not 'from H atom') (Not 'to Al ion') (Not 'e-s transferred')

